362 research outputs found

    Multiplexed Readout of Transmon Qubits with Josephson Bifurcation Amplifiers

    Get PDF
    Achieving individual qubit readout is a major challenge in the development of scalable superconducting quantum processors. We have implemented the multiplexed readout of a four transmon qubit circuit using non-linear resonators operated as Josephson bifurcation amplifiers. We demonstrate the simultaneous measurement of Rabi oscillations of the four transmons. We find that multiplexed Josephson bifurcation is a high-fidelity readout method, the scalability of which is not limited by the need of a large bandwidth nearly quantum-limited amplifier as is the case with linear readout resonators.Comment: 7 pages, 6 figures, and 31 reference

    Dephasing of qubits by transverse low-frequency noise

    Full text link
    We analyze the dissipative dynamics of a two-level quantum system subject to low-frequency, e.g. 1/f noise, motivated by recent experiments with superconducting quantum circuits. We show that the effect of transverse linear coupling of the system to low-frequency noise is equivalent to that of quadratic longitudinal coupling. We further find the decay law of quantum coherent oscillations under the influence of both low- and high-frequency fluctuations, in particular, for the case of comparable rates of relaxation and pure dephasing

    Manipulating the Quantum State of an Electrical Circuit

    Full text link
    We have designed and operated a superconducting tunnel junction circuit that behaves as a two-level atom: the ``quantronium''. An arbitrary evolution of its quantum state can be programmed with a series of microwave pulses, and a projective measurement of the state can be performed by a pulsed readout sub-circuit. The measured quality factor of quantum coherence Qphi=25000 is sufficiently high that a solid-state quantum processor based on this type of circuit can be envisioned.Comment: 4 figures include

    Quantum Heating of a nonlinear resonator probed by a superconducting qubit

    Full text link
    We measure the quantum fluctuations of a pumped nonlinear resonator, using a superconducting artificial atom as an in-situ probe. The qubit excitation spectrum gives access to the frequency and temperature of the intracavity field fluctuations. These are found to be in agreement with theoretical predictions; in particular we experimentally observe the phenomenon of quantum heating

    Storage and Retrieval of a Microwave Field in a Spin Ensemble

    Full text link
    We report the storage and retrieval of a small microwave field from a superconducting resonator into collective excitations of a spin ensemble. The spins are nitrogen-vacancy centers in a diamond crystal. The storage time of the order of 30 ns is limited by inhomogeneous broadening of the spin ensemble.Comment: 4 pages + supplementary material. Submitted to PR

    Circuit QED with a Nonlinear Resonator : ac-Stark Shift and Dephasing

    Get PDF
    We have performed spectroscopic measurements of a superconducting qubit dispersively coupled to a nonlinear resonator driven by a pump microwave field. Measurements of the qubit frequency shift provide a sensitive probe of the intracavity field, yielding a precise characterization of the resonator nonlinearity. The qubit linewidth has a complex dependence on the pump frequency and amplitude, which is correlated with the gain of the nonlinear resonator operated as a small-signal amplifier. The corresponding dephasing rate is found to be close to the quantum limit in the low-gain limit of the amplifier.Comment: Paper : 4 pages, 3 figures; Supplementary material : 1 page, 1 figur

    Characterization of a two-transmon processor with individual single-shot qubit readout

    Full text link
    We report the characterization of a two-qubit processor implemented with two capacitively coupled tunable superconducting qubits of the transmon type, each qubit having its own non-destructive single-shot readout. The fixed capacitive coupling yields the \sqrt{iSWAP} two-qubit gate for a suitable interaction time. We reconstruct by state tomography the coherent dynamics of the two-bit register as a function of the interaction time, observe a violation of the Bell inequality by 22 standard deviations after correcting readout errors, and measure by quantum process tomography a gate fidelity of 90%

    Kinetics of the superconducting charge qubit in the presence of a quasiparticle

    Full text link
    We investigate the energy and phase relaxation of a superconducting qubit caused by a single quasiparticle. In our model, the qubit is an isolated system consisting of a small island (Cooper-pair box) and a larger superconductor (reservoir) connected with each other by a tunable Josephson junction. If such system contains an odd number of electrons, then even at lowest temperatures a single quasiparticle is present in the qubit. Tunneling of a quasiparticle between the reservoir and the Cooper-pair box results in the relaxation of the qubit. We derive master equations governing the evolution of the qubit coherences and populations. We find that the kinetics of the qubit can be characterized by two time scales - quasiparticle escape time from reservoir to the box, Γin1\Gamma^{-1}_{in}, and quasiparticle relaxation time τ\tau. The former is determined by the dimensionless normal-state conductance gTg_T of the Josephson junction and one-electron level spacing δr\delta_r in the reservoir (ΓingTδr\Gamma_{in}\sim g_T\delta_r), and the latter is due to electron-phonon interaction. We find that phase coherence is damped on the time scale of Γin1\Gamma^{-1}_{in}. The qubit energy relaxation depends on the ratio of the two characteristic times, τ\tau and Γin1\Gamma^{-1}_{in}, and also on the ratio of temperature TT to the Josephson energy EJE_J.Comment: 12 pages, 4 figures, final version as published in PRB, some changes, reference adde

    Tunable resonators for quantum circuits

    Get PDF
    We have designed, fabricated and measured high-Q λ/2\lambda/2 coplanar waveguide microwave resonators whose resonance frequency is made tunable with magnetic field by inserting a DC-SQUID array (including 1 or 7 SQUIDs) inside. Their tunability range is 30% of the zero field frequency. Their quality factor reaches up to 3×104\times10^4. We present a model based on thermal fluctuations that accounts for the dependance of the quality factor with magnetic field.Comment: subm. to JLTP (Proc. of LTD12 conference
    corecore